Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa.

Identifieur interne : 000003 ( Main/Exploration ); précédent : 000002; suivant : 000004

miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa.

Auteurs : Di Fan [République populaire de Chine] ; Lingyu Ran [République populaire de Chine] ; Jian Hu [République populaire de Chine] ; Xiao Ye [République populaire de Chine] ; Dan Xu [République populaire de Chine] ; Jianqiu Li [République populaire de Chine] ; Huili Su [République populaire de Chine] ; Xianqiang Wang [République populaire de Chine] ; Sha Ren [République populaire de Chine] ; Keming Luo [République populaire de Chine]

Source :

RBID : pubmed:32270484

Abstract

Trichomes are specialized epidermal cells that contribute to plant resistance against herbivores. Their formation is controlled precisely by multiple genetic and environmental signals. Previous studies have shown that microRNA319 (miR319) and gibberellin (GA) signaling are involved in trichome development in Arabidopsis, but little is known about their interaction between these factors. Here we reported that the miR319a/TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) module participates in trichome initiation synergistically with GA signaling in Populus tomentosa. We demonstrated that overexpression of miR319a decreased transcription levels of its targeted TCPs and significantly elevated leaf trichome density in transgenic poplar, resulting in decreasing insect herbivory. Conversely, repressing miR319a by short tandem target mimics (STTM) elevated TCP expression levels and decreased trichome density in transgenic plants. The trichome phenotype of 35S:miR319a plants could be abolished by introducing a miR319a-resistant form of TCP19. Furthermore, the miR319a-targeted TCP19 interacted directly with REPRESSOR OF ga1-3 (RGA), a downstream repressor of GA signaling. TCP19 and RGA synergistically inhibited the GLABROUS1 (GL1)-induced expression of trichome marker gene GLABRA2 (GL2), thereby repressing leaf trichome initiation. Our results provide an insight into the molecular mechanism by which miR319/TCP19 module and GA signaling coordinated regulating trichome initiation in P. tomentosa.

DOI: 10.1111/nph.16585
PubMed: 32270484


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa.</title>
<author>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ran, Lingyu" sort="Ran, Lingyu" uniqKey="Ran L" first="Lingyu" last="Ran">Lingyu Ran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jian" sort="Hu, Jian" uniqKey="Hu J" first="Jian" last="Hu">Jian Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Xiao" sort="Ye, Xiao" uniqKey="Ye X" first="Xiao" last="Ye">Xiao Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Dan" sort="Xu, Dan" uniqKey="Xu D" first="Dan" last="Xu">Dan Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Su, Huili" sort="Su, Huili" uniqKey="Su H" first="Huili" last="Su">Huili Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xianqiang" sort="Wang, Xianqiang" uniqKey="Wang X" first="Xianqiang" last="Wang">Xianqiang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ren, Sha" sort="Ren, Sha" uniqKey="Ren S" first="Sha" last="Ren">Sha Ren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32270484</idno>
<idno type="pmid">32270484</idno>
<idno type="doi">10.1111/nph.16585</idno>
<idno type="wicri:Area/Main/Corpus">000356</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000356</idno>
<idno type="wicri:Area/Main/Curation">000356</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000356</idno>
<idno type="wicri:Area/Main/Exploration">000356</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa.</title>
<author>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ran, Lingyu" sort="Ran, Lingyu" uniqKey="Ran L" first="Lingyu" last="Ran">Lingyu Ran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jian" sort="Hu, Jian" uniqKey="Hu J" first="Jian" last="Hu">Jian Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ye, Xiao" sort="Ye, Xiao" uniqKey="Ye X" first="Xiao" last="Ye">Xiao Ye</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Dan" sort="Xu, Dan" uniqKey="Xu D" first="Dan" last="Xu">Dan Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Su, Huili" sort="Su, Huili" uniqKey="Su H" first="Huili" last="Su">Huili Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xianqiang" sort="Wang, Xianqiang" uniqKey="Wang X" first="Xianqiang" last="Wang">Xianqiang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ren, Sha" sort="Ren, Sha" uniqKey="Ren S" first="Sha" last="Ren">Sha Ren</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trichomes are specialized epidermal cells that contribute to plant resistance against herbivores. Their formation is controlled precisely by multiple genetic and environmental signals. Previous studies have shown that microRNA319 (miR319) and gibberellin (GA) signaling are involved in trichome development in Arabidopsis, but little is known about their interaction between these factors. Here we reported that the miR319a/TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) module participates in trichome initiation synergistically with GA signaling in Populus tomentosa. We demonstrated that overexpression of miR319a decreased transcription levels of its targeted TCPs and significantly elevated leaf trichome density in transgenic poplar, resulting in decreasing insect herbivory. Conversely, repressing miR319a by short tandem target mimics (STTM) elevated TCP expression levels and decreased trichome density in transgenic plants. The trichome phenotype of 35S:miR319a plants could be abolished by introducing a miR319a-resistant form of TCP19. Furthermore, the miR319a-targeted TCP19 interacted directly with REPRESSOR OF ga1-3 (RGA), a downstream repressor of GA signaling. TCP19 and RGA synergistically inhibited the GLABROUS1 (GL1)-induced expression of trichome marker gene GLABRA2 (GL2), thereby repressing leaf trichome initiation. Our results provide an insight into the molecular mechanism by which miR319/TCP19 module and GA signaling coordinated regulating trichome initiation in P. tomentosa.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32270484</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>227</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa.</ArticleTitle>
<Pagination>
<MedlinePgn>867-883</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16585</ELocationID>
<Abstract>
<AbstractText>Trichomes are specialized epidermal cells that contribute to plant resistance against herbivores. Their formation is controlled precisely by multiple genetic and environmental signals. Previous studies have shown that microRNA319 (miR319) and gibberellin (GA) signaling are involved in trichome development in Arabidopsis, but little is known about their interaction between these factors. Here we reported that the miR319a/TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) module participates in trichome initiation synergistically with GA signaling in Populus tomentosa. We demonstrated that overexpression of miR319a decreased transcription levels of its targeted TCPs and significantly elevated leaf trichome density in transgenic poplar, resulting in decreasing insect herbivory. Conversely, repressing miR319a by short tandem target mimics (STTM) elevated TCP expression levels and decreased trichome density in transgenic plants. The trichome phenotype of 35S:miR319a plants could be abolished by introducing a miR319a-resistant form of TCP19. Furthermore, the miR319a-targeted TCP19 interacted directly with REPRESSOR OF ga1-3 (RGA), a downstream repressor of GA signaling. TCP19 and RGA synergistically inhibited the GLABROUS1 (GL1)-induced expression of trichome marker gene GLABRA2 (GL2), thereby repressing leaf trichome initiation. Our results provide an insight into the molecular mechanism by which miR319/TCP19 module and GA signaling coordinated regulating trichome initiation in P. tomentosa.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ran</LastName>
<ForeName>Lingyu</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianqiu</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Huili</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xianqiang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Sha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Keming</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0003-4928-7578</Identifier>
<AffiliationInfo>
<Affiliation>Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus tomentosa </Keyword>
<Keyword MajorTopicYN="Y">RGA</Keyword>
<Keyword MajorTopicYN="Y">TCP</Keyword>
<Keyword MajorTopicYN="Y">gibberellin</Keyword>
<Keyword MajorTopicYN="Y">miR319a</Keyword>
<Keyword MajorTopicYN="Y">trichome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32270484</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16585</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>An L, Zhou Z, Su S, Yan A, Gan Y. 2012. GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis. Plant and Cell Physiology 53: 457-469.</Citation>
</Reference>
<Reference>
<Citation>Arimura G, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J. 2004. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus. Plant Physiology 135: 1976-1983.</Citation>
</Reference>
<Reference>
<Citation>Axtell MJ, Bowman JL. 2008. Evolution of plant microRNAs and their targets. Trends in Plant Science 13: 343-349.</Citation>
</Reference>
<Reference>
<Citation>Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J. 2005. The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132: 291-298.</Citation>
</Reference>
<Reference>
<Citation>Bjorkman C, Dalin P, Ahrné K. 2008. Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytologist 179: 176-184.</Citation>
</Reference>
<Reference>
<Citation>Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou JM. 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology 146: 368-376.</Citation>
</Reference>
<Reference>
<Citation>Chen S, Songkumarn P, Liu J, Wang GL. 2009. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology 150: 1111-1121.</Citation>
</Reference>
<Reference>
<Citation>Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, et al. 2012. The mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. The Plant Cell 24: 2898-2916.</Citation>
</Reference>
<Reference>
<Citation>Chien JC, Sussex IM. 1996. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiodin Arabidopsis thaliana (L.) Heynh. Plant Physiology 111: 1321-1328.</Citation>
</Reference>
<Reference>
<Citation>Dai XB, Zhuang ZH, Zhao PX. 2018. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research. 46: W49-W54.</Citation>
</Reference>
<Reference>
<Citation>Dhaka N, Bhardwaj V, Sharma MK, Sharma R. 2017. Evolving Tale of TCPs: new paradigms and old lacunae. Frontiers in Plant Science 8: 479.</Citation>
</Reference>
<Reference>
<Citation>Ding L, Chen Y, Wei X, Ni M, Zhang J, Wang H, Zhu Z, Wei J. 2017. Laboratory evaluation of transgenic Populus davidiana×Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against gypsy moth and fall webworm. PLoS ONE 12: e0178754.</Citation>
</Reference>
<Reference>
<Citation>El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Research 47: D427-D432.</Citation>
</Reference>
<Reference>
<Citation>Gan Y, Kumimoto R, Liu C, Ratcliffe O, Yu H, Broun P. 2006. GLABROUS INFLORESCENCE STEMS modulates there gulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 18: 1383-1395.</Citation>
</Reference>
<Reference>
<Citation>Gan Y, Liu C, Yu H, Broun P. 2007. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134: 2073-2081.</Citation>
</Reference>
<Reference>
<Citation>Gruber MY, Wang S, Ethier S, Holowachuk J, Bonham-Smith PC, Soroka J, Lloyd A. 2006. ‘‘HAIRY CANOLA’’ - Arabidopsis GL3 induces a dense covering of trichomes on Brassica napus seedlings. Plant Molecular Biology 60: 679-698.</Citation>
</Reference>
<Reference>
<Citation>Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X. 2012. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. Journal of Experimental Botany 63: 6267-6281.</Citation>
</Reference>
<Reference>
<Citation>Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1: 13.</Citation>
</Reference>
<Reference>
<Citation>Irmisch S, Clavijo McCormick A, Günther J, Schmidt A, Boeckler GA, Gershenzon J, Unsicker SB, Köllner TG. 2015. Herbivore-induced poplar cytochrome p450 enzymes of the cyp71 family convert aldoximes to nitriles which repel a generalist caterpillar. The Plant Journal 80: 1095-1107.</Citation>
</Reference>
<Reference>
<Citation>Jansson S, Douglas CJ. 2007. Populus: a model system for plant biology. Annual Review of Plant Biology 58: 435-458.</Citation>
</Reference>
<Reference>
<Citation>Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, Luo K. 2010. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiology 30: 1599-1605.</Citation>
</Reference>
<Reference>
<Citation>Kang JH, Shi F, Jones AD, Marks MD, Howe GA. 2010. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany 61: 1053-1064.</Citation>
</Reference>
<Reference>
<Citation>Karabourniotis G, Papadopoulos K, Papamarkou M, Manetas Y. 1992. Ultraviolet-B radiation absorbing capacity of leaf hairs. Plant Physiology 86: 414-418.</Citation>
</Reference>
<Reference>
<Citation>Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12: 357-360.</Citation>
</Reference>
<Reference>
<Citation>Kivimäki M, Kärkkäinen K, Gaudeul M, Løe G, Ågren J. 2007. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Molecular Ecology 16: 453-462.</Citation>
</Reference>
<Reference>
<Citation>Kosugi S, Ohashi Y. 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal 30: 337-348.</Citation>
</Reference>
<Reference>
<Citation>Koyama T, Ohme-Takagi M. 2010. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22: 3574-3588.</Citation>
</Reference>
<Reference>
<Citation>Koyama T, Sato F, Ohme-Takagi M. 2017. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology 175: 874-885.</Citation>
</Reference>
<Reference>
<Citation>Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: R25.</Citation>
</Reference>
<Reference>
<Citation>Lee MM, Schiefelbein J. 1999. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99: 473-483.</Citation>
</Reference>
<Reference>
<Citation>Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323.</Citation>
</Reference>
<Reference>
<Citation>Li ZY, Li B, Dong AW. 2012. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Molecular Plant 5: 270-280.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Li D, Yan J, Wang K, Luo H, Zhang W. 2019. MiR319-mediated ethylene biosynthesis, signalling and salt stress response in switchgrass. Plant Biotechnology Journal 17: 2370-2383.</Citation>
</Reference>
<Reference>
<Citation>Lloyd G, McCown B. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. International Plant Propagator's Society 30: 421-427.</Citation>
</Reference>
<Reference>
<Citation>Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15: 31-39.</Citation>
</Reference>
<Reference>
<Citation>Mauricio R. 1998. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. The American Naturalist 151: 20-28.</Citation>
</Reference>
<Reference>
<Citation>Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E. 2007. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiology 145: 1-11.</Citation>
</Reference>
<Reference>
<Citation>Nag A, King S, Jack T. 2009. MIR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106: 22534-22539.</Citation>
</Reference>
<Reference>
<Citation>Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, Brodelius PE. 2009. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70: 1123-1128.</Citation>
</Reference>
<Reference>
<Citation>Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I et al. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics 39: 787-791.</Citation>
</Reference>
<Reference>
<Citation>Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. 2003. Control of leaf morphogenesis by micoRNAs. Nature 425: 257-263.</Citation>
</Reference>
<Reference>
<Citation>Pattanaik S, Patra B, Singh SK, Yuan L. 2014. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Frontiers in Plant Science 5: 259.</Citation>
</Reference>
<Reference>
<Citation>Payne CT, Zhang F, Lloyd AM. 2000. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156: 1349-1362.</Citation>
</Reference>
<Reference>
<Citation>Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes and Development 11: 3194-3205.</Citation>
</Reference>
<Reference>
<Citation>Perazza D, Vachon G, Herzog M. 1998. Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis. Plant Physiology 117: 375-383.</Citation>
</Reference>
<Reference>
<Citation>Plett JM, Wilkins O, Campbell MM, Ralph SG, Regan S. 2010. Endogenous overexpression of Populus MYB186 increases trichome density, improves insectpest resistance, and impacts plant growth. The Plant Journal 64: 419-432.</Citation>
</Reference>
<Reference>
<Citation>Pruneda-Paz JL, Breton G, Para A, Kay SA. 2009. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323: 1481-1485.</Citation>
</Reference>
<Reference>
<Citation>Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D. 2014. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26: 1118-1133.</Citation>
</Reference>
<Reference>
<Citation>Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23: 1795-1814.</Citation>
</Reference>
<Reference>
<Citation>Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, Philippe RN, Aeschliman D, White R, Huber D et al. 2006. Genomics of hybrid poplar (Populus trichocarpa x deltoides. interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Molecular Ecology 15: 1275-1297.</Citation>
</Reference>
<Reference>
<Citation>Rerie WG, Feldmann KA, Marks MD. 1994. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Development 8: 1388-1399.</Citation>
</Reference>
<Reference>
<Citation>Schilmiller AL, Schauvinholdb I, Larsonc M, Xub R, Charbonneaua AL, Schmidtb A, Wilkersona C, Lasta RL, Picherskyb E. 2009. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proceedings of the National Academy of Sciences, USA 106: 10865-10870.</Citation>
</Reference>
<Reference>
<Citation>Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF. 2014. Repression of cell proliferation by miR319-regulated TCP4. Molecular Plant 7: 1533-1544.</Citation>
</Reference>
<Reference>
<Citation>Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Weigel D. 2008. Control of jasmonate biosynthesis and senescence by MIR319 targets. PLoS Biology 6: e230.</Citation>
</Reference>
<Reference>
<Citation>Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. 2009. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology 50: 2133-2145.</Citation>
</Reference>
<Reference>
<Citation>Silverstone AL, Ciampaglio CN, Sun TP. 1998. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10: 155-169.</Citation>
</Reference>
<Reference>
<Citation>Sun XL, Jones WT, Harvey D, Edwards PJB, Pascal SM, Kirk C. 2010. N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors. Journal of Biological Chemistry 285: 11557.</Citation>
</Reference>
<Reference>
<Citation>Tao Q, Guo D, Wei B, Zhang F, Pang C, Jiang H, Zhang J, Wei T, Gu H, Qu LJ et al. 2013. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. Plant Cell 25: 421-437.</Citation>
</Reference>
<Reference>
<Citation>Thomson DW, Bracken CP, Goodall GJ. 2011. Experimental strategies for microRNA target identification. Nucleic Acids Research 39: 6845-6853.</Citation>
</Reference>
<Reference>
<Citation>Traw MB, Bergelson J. 2003. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology 133: 1367-1375.</Citation>
</Reference>
<Reference>
<Citation>Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science 313: 1596-1604.</Citation>
</Reference>
<Reference>
<Citation>Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP. 2004. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology 135: 1008-1019.</Citation>
</Reference>
<Reference>
<Citation>Vadde BVL, Challa KR, Nath U. 2018. The TCP4 transcription factor regulates trichome cell differentiation by directly activating glabrous inflorescence stems in Arabidopsis thaliana. The Plant Journal 93: 259-269.</Citation>
</Reference>
<Reference>
<Citation>Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11: 1337-1350.</Citation>
</Reference>
<Reference>
<Citation>Wang JW, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138: 738-749.</Citation>
</Reference>
<Reference>
<Citation>Warthmann N, Das S, Lanz C, Weigel D. 2008. Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Molecular Biology and Evolution 25: 892-902.</Citation>
</Reference>
<Reference>
<Citation>Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A, Claus Schwechheimer C. 2007. The DELLA domain of GA insensitive mediates the interaction with the GA insensitive DWARF1a gibberellin receptor of Arabidopsis. Plant Cell 19: 1209-1220.</Citation>
</Reference>
<Reference>
<Citation>Xue XY, Zhao B, Chao LM, Cui WR, Mao YB, Chao XY. 2014. Interaction between two timing microRNAs controls trichome distribution in Arabidopsis. PLoS Genetics 10: e1004266.</Citation>
</Reference>
<Reference>
<Citation>Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24: 415-427.</Citation>
</Reference>
<Reference>
<Citation>Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY. 2010. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22: 2322-2335.</Citation>
</Reference>
<Reference>
<Citation>Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A. 2003. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859-4869.</Citation>
</Reference>
<Reference>
<Citation>Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. 2008. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135: 1991-1999.</Citation>
</Reference>
<Reference>
<Citation>Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H. 2013. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiology 161: 1375-1391.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
</noRegion>
<name sortKey="Fan, Di" sort="Fan, Di" uniqKey="Fan D" first="Di" last="Fan">Di Fan</name>
<name sortKey="Hu, Jian" sort="Hu, Jian" uniqKey="Hu J" first="Jian" last="Hu">Jian Hu</name>
<name sortKey="Li, Jianqiu" sort="Li, Jianqiu" uniqKey="Li J" first="Jianqiu" last="Li">Jianqiu Li</name>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<name sortKey="Luo, Keming" sort="Luo, Keming" uniqKey="Luo K" first="Keming" last="Luo">Keming Luo</name>
<name sortKey="Ran, Lingyu" sort="Ran, Lingyu" uniqKey="Ran L" first="Lingyu" last="Ran">Lingyu Ran</name>
<name sortKey="Ren, Sha" sort="Ren, Sha" uniqKey="Ren S" first="Sha" last="Ren">Sha Ren</name>
<name sortKey="Ren, Sha" sort="Ren, Sha" uniqKey="Ren S" first="Sha" last="Ren">Sha Ren</name>
<name sortKey="Su, Huili" sort="Su, Huili" uniqKey="Su H" first="Huili" last="Su">Huili Su</name>
<name sortKey="Wang, Xianqiang" sort="Wang, Xianqiang" uniqKey="Wang X" first="Xianqiang" last="Wang">Xianqiang Wang</name>
<name sortKey="Xu, Dan" sort="Xu, Dan" uniqKey="Xu D" first="Dan" last="Xu">Dan Xu</name>
<name sortKey="Ye, Xiao" sort="Ye, Xiao" uniqKey="Ye X" first="Xiao" last="Ye">Xiao Ye</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32270484
   |texte=   miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32270484" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020